Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.09.09.459577

RESUMEN

SARS-CoV-2 infection results in impaired interferon response in severe COVID-19 patients. However, how SARS-CoV-2 interferes with host immune response is incompletely understood. Here, we sequenced small RNAs from SARS-CoV-2-infected human cells and identified a micro-RNA (miRNA) encoded in a recently evolved region of the viral genome. We show that the virus-encoded miRNA produces two miRNA isoforms in infected cells by the enzyme Dicer and they are loaded into Argonaute proteins. Moreover, the predominant miRNA isoform targets the 3UTR of interferon-stimulated genes and represses their expression in a miRNA-like fashion. Finally, the two viral miRNA isoforms were detected in nasopharyngeal swabs from COVID-19 patients. We propose that SARS-CoV-2 employs a virus-encoded miRNA to hijack the host miRNA machinery and evade the interferon-mediated immune response.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave
3.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.04.08.439059

RESUMEN

Animal models are essential to understand COVID-19 pathophysiology and for pre-clinical assessment of drugs and other therapeutic or prophylactic interventions. We explored the small, cheap and transparent zebrafish larva as a potential host for the SARS-CoV-2 virus. Bath exposure, as well as microinjection in the coelom, pericardium, brain ventricle, bloodstream, or yolk, did not result in detectable SARS-CoV-2 replication in wild-type larvae. However, when the virus was inoculated in the swim bladder, a modest increase in viral RNA was observed after 24 hours, suggesting a successful infection in some animals. The low infectivity of SARS- CoV-2 in zebrafish was not due to the host type I interferon response, as similar results were observed in type I interferon-deficient animals. We could not detect the induction of transcriptional type I interferon or inflammatory cytokine responses following infection. Overexpression of human ACE2 in a mosaic fashion by plasmid injection in eggs was not sufficient to increase SARS-CoV-2 infectivity. In conclusion, wild-type zebrafish larvae appear mostly non-permissive to SARS-CoV-2, except in the swim bladder, an aerial organ sharing similarities with lungs.


Asunto(s)
COVID-19 , Síndrome Respiratorio Agudo Grave
4.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.03.23.436648

RESUMEN

Repurposing drugs as treatments for COVID-19 has drawn much attention. A common strategy has been to screen for established drugs, typically developed for other indications, that are antiviral in cells or organisms. Intriguingly, most of the drugs that have emerged from these campaigns, though diverse in structure, share a common physical property: cationic amphiphilicity. Provoked by the similarity of these repurposed drugs to those inducing phospholipidosis, a well-known drug side effect, we investigated phospholipidosis as a mechanism for antiviral activity. We tested 23 cationic amphiphilic drugs-including those from phenotypic screens and others that we ourselves had found-for induction of phospholipidosis in cell culture. We found that most of the repurposed drugs, which included hydroxychloroquine, azithromycin, amiodarone, and four others that have already progressed to clinical trials, induced phospholipidosis in the same concentration range as their antiviral activity; indeed, there was a strong monotonic correlation between antiviral efficacy and the magnitude of the phospholipidosis. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the gross physical properties of drugs, and does not reflect specific target-based activities, rather it may be considered a confound in early drug discovery. Understanding its role in infection, and detecting its effects rapidly, will allow the community to better distinguish between drugs and lead compounds that more directly impact COVID-19 from the large proportion of molecules that manifest this confounding effect, saving much time, effort and cost.


Asunto(s)
COVID-19
5.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.02.01.429176

RESUMEN

Small linear motif targeting protein interacting domains called PDZ have been identified at the C-terminus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins E, 3a, and N. Using a high-throughput approach of affinity-profiling against the full human PDZome, we identified sixteen human PDZ binders of SARS-CoV-2 proteins E, 3A and N showing significant interactions with dissociation constants values ranging from 3 M to 82 M. Six of them (TJP1, PTPN13, HTRA1, PARD3, MLLT4, LNX2) are also recognized by SARS-CoV while three (NHERF1, MAST2, RADIL) are specific to SARS-CoV-2 E protein. Most of these SARS-CoV-2 protein partners are involved in cellular junctions/polarity and could be also linked to evasion mechanisms of the immune responses during viral infection. Seven of the PDZ-containing proteins among binders of the SARS-CoV-2 proteins E, 3a or N affect significantly viral replication under knock-down gene expression in infected cells. This PDZ profiling identifying human proteins potentially targeted by SARS-CoV-2 can help to understand the multifactorial severity of COVID19 and to conceive effective anti-coronaviral agents for therapeutic purposes.


Asunto(s)
Infecciones por Coronavirus , COVID-19 , Virosis
6.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.01.19.427194

RESUMEN

SARS-CoV-2 infection of human cells is initiated by the binding of the viral Spike protein to its cell-surface receptor ACE2. We conducted an unbiased CRISPRi screen to uncover druggable pathways controlling Spike protein binding to human cells. We found that the protein BRD2 is an essential node in the cellular response to SARS-CoV-2 infection. BRD2 is required for ACE2 transcription in human lung epithelial cells and cardiomyocytes, and BRD2 inhibitors currently evaluated in clinical trials potently block endogenous ACE2 expression and SARS-CoV-2 infection of human cells. BRD2 also controls transcription of several other genes induced upon SARS-CoV-2 infection, including the interferon response, which in turn regulates ACE2 levels. It is possible that the previously reported interaction between the viral E protein and BRD2 evolved to manipulate the transcriptional host response during SARS-CoV-2 infection. Together, our results pinpoint BRD2 as a potent and essential regulator of the host response to SARS-CoV-2 infection and highlight the potential of BRD2 as a novel therapeutic target for COVID-19.


Asunto(s)
COVID-19
7.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.01.19.427282

RESUMEN

In late 2019 a novel coronavirus (SARS-CoV-2) emerged, and has since caused a global pandemic. Understanding the pathogenesis of COVID-19 disease is necessary to inform development of therapeutics, and management of infected patients. Using scRNAseq of blood drawn from SARS-CoV-2 patients, we asked whether SARS-CoV-2 may exploit immune cells as a 'Trojan Horse' to disseminate and access multiple organ systems. Our data suggests that circulating cells are not actively infected with SARS-CoV-2, and do not appear to be a source of viral dissemination.


Asunto(s)
COVID-19 , Infecciones
8.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.01.18.427189

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and transmission involves a series of processes that may be targeted by vaccines and therapeutics. During transmission, host cell invasion is controlled by a large-scale conformational change of the Spike protein. This conformational rearrangement leads to membrane fusion, which creates transmembrane pores through which the viral genome is passed to the host. During Spike-protein-mediated fusion, the fusion peptides must be released from the core of the protein and associate with the host membrane. Interestingly, the Spike protein possesses many post-translational modifications, in the form of branched glycans that flank the surface of the assembly. Despite the large number of glycosylation sites, until now, the specific role of glycans during cell invasion has been unclear. Here, we propose that glycosylation is needed to provide sufficient time for the fusion peptides to reach the host membrane, otherwise the viral particle would fail to enter the host. To understand this process, an all-atom model with simplified energetics was used to perform thousands of simulations in which the protein transitions between the prefusion and postfusion conformations. These simulations indicate that the steric composition of the glycans induces a pause during the Spike protein conformational change. We additionally show that this glycan-induced delay provides a critical opportunity for the fusion peptides to capture the host cell. This previously-unrecognized role of glycans reveals how the glycosylation state can regulate infectivity of this pervasive pathogen.


Asunto(s)
Infecciones por Coronavirus , Síndrome Respiratorio Agudo Grave
9.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.09.16.299362

RESUMEN

Phosphorylation of serines 197 and 206 of SARS-COV-2 Nucleocapsid protein (NCp) enhanced the stability and binding efficiency and sequestration of NCp to Protein 14-3-3 by increasing the Stability Energy ({Delta}Gstability energy) and Binding Energy ({Delta}{Delta}Gbinding energy) from ~545 Kcal/mol to ~616 Kcal/mol, and from 108 Kcal/mol to ~228 Kcal/mol respectively. The calculated Binding Energy Difference ({Delta}{Delta}Gbinding energy difference) between dephospho-NCp-14-3-3 complex and phospho-NCp-13-3-3 complex was ~72 Kcal/mol. Phosphorylations of serines 186, 197, 202 and 206, and threonines 198 and 205 NCp also caused an increase in the Stability Energy ({Delta}Gstability energy) and Binding Energy ({Delta}{Delta}Gbinding energy) from ~545 Kcal/mol to ~617, 616, 583, 580, 574, 564 and 566 Kcal/mol and from ~108 Kcal/mol to ~228, 216, 184, 188, 184, 174 and 112 Kcal/mol respectively. Phosphorylation of NCp on serines 197 and 206 caused a decrease in Stability Energy and Binding Energy from ~698 Kcal/mol to 688 Kcal/mol, and from ~91 Kcal/mol to ~82 Kcal/mol for the dimerization of NCp. These results support the existence of a phosphorylation dependent cellular mechanism to bind and sequester NCp.

10.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.09.16.297945

RESUMEN

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, and responsible for tens of millions of infections, and hundreds of thousands of deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication, and inhibitors targeting proteases have already shown success at inhibiting SARS-CoV-2 in cell culture models. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify multiple previously unknown cleavage sites in multiple viral proteins, including major antigenic proteins S and N, which are the main targets for vaccine and antibody testing efforts. We discovered significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We showed that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and the Ser/Thr kinase MYLK/MLCK, showed a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19 disease.


Asunto(s)
Virosis , COVID-19
11.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.09.16.298992

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak that started in China at the end of 2019 has rapidly spread to become pandemic. Several investigational vaccines that have already been tested in animals and humans were able to induce neutralizing antibodies against the SARS-CoV-2 spike (S) protein, however protection and long-term efficacy in humans remain to be demonstrated. We have investigated if a virus-like particle (VLP) derived from Moloney murine leukemia virus (MLV) could be engineered to become a candidate SARS-CoV-2 vaccine amenable to mass production. First, we showed that a codon optimized version of the S protein could migrate efficiently to the cell membrane. However, efficient production of infectious nanoparticles was only achieved with stable expression of a shorter version of S in its C-terminal domain (DeltaS) in 293 cells that express MLV Gag-Pol (293GP). The incorporation of DeltaS was 15-times more efficient into VLPs as compared to the full-length version, and that was not due to steric interference between the S cytoplasmic tail and the MLV capsid. Indeed, a similar result was also observed with extracellular vesicles released from parental 293 cells. The amount of DeltaS incorporated into VLPs released from producer cells was robust, with an estimated 1.25 microg/ml S2 equivalent (S is comprised of S1 and S2). Thus, a scalable platform that has the potential for production of pan-coronavirus VLP vaccines is described. The resulting nanoparticles could potentially be used alone or as a boost for other immunization strategies for COVID-19.


Asunto(s)
Leucemia , Síndrome Respiratorio Agudo Grave , COVID-19 , Síndrome de Inmunodeficiencia Adquirida del Murino
12.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.08.08.238469

RESUMEN

Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.


Asunto(s)
COVID-19
13.
David E. Gordon; Gwendolyn M. Jang; Mehdi Bouhaddou; Jiewei Xu; Kirsten Obernier; Jeffrey Z. Guo; Danielle L. Swaney; Tia A. Tummino; Ruth Huttenhain; Robyn M. Kaake; Alicia L. Richards; Beril Tutuncuoglu; Helene Foussard; Jyoti Batra; Kelsey Haas; Maya Modak; Minkyu Kim; Paige Haas; Benjamin J. Polacco; Hannes Braberg; Jacqueline M. Fabius; Manon Eckhardt; Margaret Soucheray; Melanie J. Bennett; Merve Cakir; Michael J. McGregor; Qiongyu Li; Zun Zar Chi Naing; Yuan Zhou; Shiming Peng; Ilsa T. Kirby; James E. Melnyk; John S Chorba; Kevin Lou; Shizhong A. Dai; Wenqi Shen; Ying Shi; Ziyang Zhang; Inigo Barrio-Hernandez; Danish Memon; Claudia Hernandez-Armenta; Christopher J.P. Mathy; Tina Perica; Kala B. Pilla; Sai J. Ganesan; Daniel J. Saltzberg; Rakesh Ramachandran; Xi Liu; Sara B. Rosenthal; Lorenzo Calviello; Srivats Venkataramanan; Jose Liboy-Lugo; Yizhu Lin; Stephanie A. Wankowicz; Markus Bohn; Phillip P. Sharp; Raphael Trenker; Janet M. Young; Devin A. Cavero; Joseph Hiatt; Theo Roth; Ujjwal Rathore; Advait Subramanian; Julia Noack; Mathieu Hubert; Ferdinand Roesch; Thomas Vallet; Björn Meyer; Kris M. White; Lisa Miorin; Oren S. Rosenberg; Kliment A. Verba; David Agard; Melanie Ott; Michael Emerman; Davide Ruggero; Adolfo Garc&iacute-Sastre; Natalia Jura; Mark von Zastrow; Jack Taunton; Alan Ashworth; Olivier Schwartz; Marco Vignuzzi; Shaeri Mukherjee; Matt Jacobson; Harmit S. Malik; Danica G Fujimori; Trey Ideker; Charles S Craik; Stephen Floor; James S. Fraser; John Gross; Andrej Sali; Tanja Kortemme; Pedro Beltrao; Kevan Shokat; Brian K. Shoichet; Nevan J. Krogan.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.03.22.002386

RESUMEN

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.


Asunto(s)
COVID-19 , Enfermedades Respiratorias , Infecciones Tumorales por Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA